Boas vindas

O conteúdo dessa página é fruto de pesquisas de trabalhos publicados em livros, sites, revistas, trabalhos acadêmicos e do próprio conhecimento do autor. Nosso objetivo é concentrar conhecimento sobre T.I, principalmente para não profissionais da área.


Seja bem vindo !

Sistemas de informação na saúde

A história do computador


-->
Pré-história
Pré-história das calculadoras
O primeiro dispositivo de cálculos foi o ábaco, originário da China em 2000 AC.
Régua de cálculo
No início do século XVII, o escocês John Napier inventou um dispositivo chamado Ossos de Napier que são tabelas de multiplicação gravadas em bastão, o que evitava a memorização da tabuada, e que trouxe grande auxílio ao uso de logaritmos, em execução de operações aritméticas como multiplicações e divisões longas.
Hoje, o dispositivo aperfeiçoado é empregado freqüentemente pelos engenheiros, através da régua de cálculo.
Calculadoras
A primeira calculadora somente somava e subtraía e foi inventada por Blaise Pascal na França em 1642, para ajudar o seu pai.
A máquina contém como elemento essencial uma roda dentada construída com 10 "dentes". Cada "dente" corresponde a um algarismo, de 0 a 9.
A primeira roda da direita corresponde às unidades, a imediatamente à sua esquerda corresponde às dezenas, a seguinte às centenas e sucessivamente.
A máquina de Leibniz
Cerca de 30 anos após a construção da máquina de Pascal, Gottfried Wilhem Von Leibniz inventou um dispositivo constituído por um conjunto com dez "dentes", cada um dos quais mais comprido que o anterior, que permitiu efetuar de modo automático a multiplicação e divisão.
Alan Turing
Alan Turing imaginou uma máquina “universal” que pudesse realizar cálculos automaticamente, demonstrando que um conjunto de estruturas simples podia resolver qualquer problema complexo. Esta máquina não chegou a ser montada.
Entretanto ele e a sua equipe desenvolveram o Colossus, um dos primeiros computadores do mundo, visto aqui em operação durante a Segunda Guerra Mundial.
Essa máquina enorme continha 1.500 válvulas, e sempre alguma se queimava em alguns minutos. O Colossus era capaz de processar 5.000 caracteres por segundo, e foi responsável pela decodificação das mensagens alemãs "Enigma".
John Von Neumann
Matemático brilhante, fugiu da Alemanha nazista para os Estados Unidos, professor em Princeton, participou do projeto para a construção da bomba atômica.
Foi convidado para o projeto ENIAC (Electronic Numeric Integrator And Calculator). O trabalho estava sob a orientação de engenheiros eletrônicos mas, como matemático, analisou o problema de modo diferente e redigiu um relatório que estruturou a arquitetura dos modernos computadores.
Ele e sua equipe desenvolveram o EDVAC (Electronic Discrete Variable Computer) onde, foi aplicada a idéia de programação interna que trata do armazenamento de programas, codificados de acordo com certos critérios na memória do computador e não em dispositivos externos, como ocorria até então.
Esse procedimento aumenta a operacionalidade dos programas, pois grupos de instruções podem ser executados várias vezes e na ordem que se fizer necessária.
Sistemas de Numeração Antigos Egípcio
Há 6.000 anos os Egípcios utilizavam um sistema decimal(dez cajados valem um osso, dez ossos valem uma corda etc.) os números eram escritos segundo o Princípio de Justaposição.
Porém não conheciam o Princípio da Posição, razão porque se tornava difícil a representação de números grandes.
Babilônio
Há 5.000 anos atrás eles utilizavam um sistema de base sessenta com símbolos cuneiformes.
Para números maiores que sessenta usa-se (e pela primeira vez na história!) o Princípio da Posição de base sessenta (Princípio Sexagesimal). Exemplos:
Romano
Há 2.100 anos atrás os romanos utilizavam os seguintes numerais:
I : um V: cinco X: dez L: cinqüenta X: cem D: quinhentos M : mil
Regras para escrever:
Somente os numerais I, X, C e M podem ser repetidos no máximo 3 vezes consecutivas.
Se um numeral (ou mais) está à direita de outro de igual ou maior valor, somam-se os seus valores (princípio aditivo da justaposição) e se está (com exceção de V, L, D e M) à esquerda de outro de valor imediatamente superior, subtraem-se (princípio subtrativo da justaposição).
Romano
Para aumentar o valor do número 1.000 vezes, coloca-se um traço horizontal sobre o numeral (com exceção do I); para aumenta-lo um milhão de vezes colocam-se dois traços e assim sucessivamente. Exemplos:
3 = III 9 = IX 21 = XXI 206 = CCVI
1.969 = MCMLXIX
Nos sistemas antigos, não existia o ZERO que foi introduzido pelos hindus há 1500 anos atrás.

Em 1945 Von Neumann sugeriu que o sistema binário fosse adotado em todos os computadores, e que as instruções e dados fossem compilados e armazenados internamente no computador, na seqüência correta de utilização. Estas sugestões tornaram-se a base filosófica para projetos de computadores. (Atualmente pesquisam-se computadores "não Von Neumann", que funcionam com fuzzy logic, lógica confusa) A partir dessas idéias, e da lógica matemática ou álgebra de Boole, introduzida por Boole no início do século XIX, é que Mauchly e Eckert projetaram e construíram o EDVAC, Electronic Discrete Variable Automatic Computer, completado em 1952, que foi a primeira máquina comercial eletrônica de processamento de dados do mundo. Eles haviam tentado isso com o BINAC, computador automático binário, de 1949, que era compacto (1,40 x 1,60 x 0,30 m) o suficiente para ser levado a bordo de um avião, mas que nunca funcionou a contento. O EDVAC utilizava memórias baseadas em linhas de retardo de mercúrio, bem mais caras e lentas que os CRTs, mas também com maior capacidade de armazenamento. Wilkes construiu o EDSAC, Electronic Delay Storage Automatic Calculator em 1949, que funcionava segundo a técnica de programas armazenados.


O primeiro computador comercial de grande escala foi o UNIVAC, UNIVersal Automatic Computer, americano, de 1951, que era programado ajustando-se cerca de 6.000 chaves e conectando-se cabos a um painel. A entrada e saída de informações era realizada por uma fita metálica de 1/2 polegada de largura e 400 m de comprimento. Ao todo, venderam-se 46 unidades do UNIVAC Modelo I, que eram normalmente acompanhados de um dispositivo impressor chamado UNIPRINTER, que, sozinho, consumia 14.000 W. Outro foi o IBM 701, de 1952, que utilizava fita plástica, mais rápida que a metálica do UNIVAC, e o IBM 704, com a capacidade fenomenal de armazenar 8.192 palavras de 36 bits, ambos da IBM. Na Inglaterra surgem o MADAM, Manchester Automatic Digital Machine, o SEC, Simple Electronic Computer, e o APEC, All-Purpose Electronic Computer.








Entre 1945 e 1951, o WHIRLWIND, do MIT, foi o primeiro computador a processar informações em tempo real, com entrada de dados a partir de fitas perfuradas e saída em CRT (monitor de vídeo), ou na flexowriter, uma espécie de máquina de escrever (Whirlwind quer dizer redemoinho). Em 1947 Bardeen, Schockley e Brattain inventam o transístor, e, em 1953 Jay Forrester constrói uma memória magnética. Os computadores a transistores surgem nos anos 50, pesando 150 kg, com consumo inferior a 1.500 W e maior capacidade que seus antecessores valvulados.
A Segunda GeraçãoEra a segunda geração. Exemplos desta época são o IBM 1401 e o BURROUGHS B 200. Em 1954 a IBM comercializa o 650, de tamanho médio. O primeiro computador totalmente transistorizado foi o TRADIC, do Bell Laboratories. O IBM TX-0, de 1958, tinha um monitor de vídeo de primeira qualidade, era rápido e relativamente pequeno, possuia dispositivo de saída sonora e até uma caneta óptica. O PDP-1, processador de dados programável, construído por Olsen, virou sensação no MIT: os alunos jogavam Spacewar! e Rato-no-labirinto, através de um joystick e uma caneta óptica.




Em 1957 o matemático Von Neumann colaborou para a construção de um computador avançado, o qual, por brincadeira, recebeu o nome de MANIAC, Mathematical Analyser Numerator Integrator and Computer. Em janeiro de 1959 a Texas Instruments anuncia ao mundo uma criação de Jack Kilby: o circuito integrado. Enquanto uma pessoa de nível médio levaria cerca de cinco minutos para multiplicar dois números de dez dígitos, o MARK I o fazia em cinco segundos, o ENIAC em dois milésimos de segundo, um computador transistorizado em cerca de quatro bilionésimos de segundo, e, uma máquina de terceira geração em menos tempo ainda.
A Terceira GeraçãoA terceira geração de computadores é da década de 60, com a introdução dos circuitos integrados. O Burroughs B-2500 foi um dos primeiros. Enquanto o ENIAC podia armazenar vinte números de dez dígitos, estes podem armazenar milhões de números. Surgem conceitos como memória virtual, multiprogramação e sistemas operacionais complexos. Exemplos desta época são o IBM 360 e o BURROUGHS B-3500.







Em 1960 existiam cerca de 5.000 computadores nos EUA. É desta época o termo software. Em 1964, a CSC, Computer Sciences Corporation, criada em 1959 com um capital de 100 dólares, tornou-se a primeira companhia de software com ações negociadas em bolsa. O primeiro minicomputador comercial surgiu em 1965, o PDP-5, lançado pela americana DEC, Digital Equipament Corporation. Dependendo de sua configuração e acessórios ele podia ser adquirido pelo acessível preço de US $ 18,000.00. Seguiu-se o PDP-8, de preço ainda mais competitivo. Seguindo seu caminho outras companhias lançaram seus modelos, fazendo com que no final da década já existissem cerca de 100.000 computadores espalhados pelo mundo.Em 1970 a INTEL Corporation introduziu no mercado um tipo novo de circuito integrado: o microprocessador. O primeiro foi o 4004, de quatro bits. Foi seguido pelo 8008, em 1972, o difundidíssimo 8080, o 8085, etc. A partir daí surgem os microcomputadores. Para muitos, a quarta geração surge com os chips VLSI, de integração em muito larga escala. As coisas começam a acontecer com maior rapidez e freqüência. Em 1972 Bushnell lança o vídeo game Atari. Kildall lança o CP/M em 1974. O primeiro kit de microcomputador, o ALTAIR 8800 em 1974/5. Em 1975 Paul Allen e Bill Gates criam a Microsoft e o primeiro software para microcomputador: uma adaptação BASIC para o ALTAIR. Em 1976 Kildall estabelece a Digital Research Incorporation, para vender o sistema operacional CP/M. Em 1977 Jobs e Wozniak criam o microcomputador Apple, a Radio Shack o TRS-80 e a Commodore o PET. A planilha Visicalc (calculador visível) de 1978/9, primeiro programa comercial, da Software Arts. Em 1979 Rubinstein começa a comercializar um software escrito por Barnaby: o Wordstar, e Paul Lutus produz o Apple Writer. O programa de um engenheiro da NASA, Waine Ratliff, o dBASE II, de 1981. Também de 1981 o IBM-PC e o Lotus 1-2-3, de Kapor, que alcançou a lista dos mais vendidos em 1982.
Primeiro chip da Intel o 4004 com 2.300 transistors, no mesmo ano Zuffo da USP fabrica o 1o chip nacional





Computador minúsculo concebido por John Sinclair, professor na Universidade de Cambrige no U.K.. Inicialmente concebido para utilização pelos estudantes da Universidade de Cambrige começou a ser comercializado, em Portugal, circa 1980 com um preço aproximado de 12.500$00. Existia uma versão em kit para montagem que era comprada aproximadamente por 9.000$00 A CPU compreendia um processador Zilog Z80A de 8 bit a 3,25 MHZ, uma memória que compreendia uma ROM e uma RAM e uma ULA. A ROM, com 8K de capacidade, armazenava de modo permanente os programas, tabelas etc. necessários ao funcionamento do sistema e um interpretador para a linguagem de programação BASIC. A RAM compreendia uma área de trabalho disponível para o utilizador de 1K mas, era extensível até 16K. Na caixa de plástico alojava-se ainda um subsistema de comunicações para ligação em série a periféricos denominado SCL (Sinclair Computer Logic), uma unidade para entrada e saída de som, um codificador de imagens para TV. Num rasgo aberto na parte traseira da caixa de plástico existia um conector onde se podia ligar uma impressora minúscula que usava um rolo de papel especial. O computador era fornecido com um cabo para ligação ao televisor e outro para ligação a um gravador de "cassettes" musical (norma Philips). O transformador de corrente eléctrica alterna para contínua era adquirido em separado. Os programas e dados eram gravados na cassette magnética e eram também lidos a partir dela. O teclado não dispunha de teclas. Os caracteres ASCII eram impressos numa membrana. Esta tecnologia e a falta de ventilação da unidade de alimentação eléctrica eram as causas principais de avarias que enviavam o ZX81 para o caixote do lixo. Foi um computador muito popular devido ao seu baixo preço de venda.







Fabricado pela Osborne nos USA circa 1982. A CPU compreendia uma memória com 64KB, uma UAL e um Processador Zilog Z80A de 8 bit a 4 MHZ. A caixa, do tipo mala attaché com uma massa de 11 Kg, albergava ainda 2 unidades de disquette de 5" 1/4 com 204 KB ou em opção com 408 KB de capacidade, um écran de 5" (24 linhas por 54 colunas) a preto e branco e um teclado basculante (servia de tampa à mala) com dois blocos de teclas, um alfanumérico com os caracteres ASCII e outro numérico. Dispunha ainda de conectores para um écran externo, ports série RS-232C e paralelo IEEE-488 ou Centronics. O sistema era alimentado por uma bateria própria recarregável com uma autonomia de 5 horas, por uma bateria externa de automóvel ou por um transformador de corrente eléctrica alterna para contínua. O sistema operativo era o CP/M desenvolvido pela Digital Corporation. O software fornecido incluia um Interpretador M BASIC desenvolvido pela MICROSOFT, um Compilador BASIC desenvolvido pela Compyler Systems, uma folha de cálculo SUPERCALC (derivada do Visicalc) e um processador de texto denominado WORDSTAR. Podia ser programado em BASIC, FORTRAN, COBOL, PASCAL, PL 1, ALGOL, C, FORTH, ADA, ASSEMBLER e CROSS-ASSEMBLER. Última morada conhecida: desconhecida (foi visto na FILEME-82 em Lisboa).






Fabricado pela IBM nos USA circa 1980, foi apresentado em Portugal em Janeiro de 1985 já com a versão PC-XT disponível, à qual se seguiu uma versão PC-AT. O CPU compreendia uma memória ROM de 40KB e uma memória RAM de 64KB extensível até 640KB, uma ULA e um processador Intel 8088 de 16 bit com uma frequência de clock de 4,77 MHZ. Era construido com três módulos separados: caixa, écran e teclado. O écran era a preto e branco com 25 linhas e 80 colunas podendo ser substituido por um écran a cores com 16 cores. A caixa para além do CPU albergava uma unidade de disquette de 5" 1/4 com uma capacidade de 360KB podendo alojar ainda uma outra unidade de disquette idêntica ou um disco com 10MB de capacidade, que era parte integrada na versão PC-XT. O teclado com 83 teclas, 10 das quais correspondentes a funções pré programadas, dispunha de caracteres acentuados (português). Possuia ainda saída para impressora e o PC-XT dispunha de um interface para comunicações assincronas. O sistema operativo era o PC/MS-DOS o qual era um MS-DOS desenvolvido pela Microsoft para a IBM. A linguagem de programação utilizada era o BASIC. Embora sendo um marco histórico da entrada da IBM no sector de mercado dos PC's, chegou a Portugal tardiamente não ocupando nunca o espaço já conquistado por outros fabricantes. Só cerca de dois anos depois, com a apresentação dos modelos PS/2-50 e PS/2-60, que eram equipados com um processador Intel 80286, a IBM recuperou o sector de mercado dos PC's utilizando para o efeito a penetração nas empresas onde tinha instalado mainframes e "pequenos computadores".
A Quarta GeraçãoSurgiram em decorrência do uso da técnica dos circuitos LSI (LARGE SCALE INTEGRATION) e VLSI (VERY LARGE SCALE INTEGRATION). Nesse período surgiu também o processamento distribuído, o disco ótico e o a grande difusão do microcomputador, que passou a ser utilizado para processamento de texto, cálculos auxiliados, etc. -1982- Surge o 286 Usando memória de 30 pinos e slots ISA de 16 bits, já vinha equipado com memória cache, para auxiliar o processador em suas funções. Utilizava ainda monitores CGA em alguns raros modelos estes monitores eram coloridos mas a grande maioria era verde, laranja ou cinza. -1985- O 386 Ainda usava memória de 30 pinos, porém devido ás sua velocidade de processamento já era possivel rodar softwares graficos mais avançados como era o caso do Windows 3.1, seu antecessor podia rodar apenas a versão 3.0 devido à baixa qualidade dos monitores CGA, o 386 já contava com placas VGA que podiam atingir até 256 cores desde que o monitor também suportasse essa configuração. -1989- O 486 DX A partir deste momento o coprocessador matemático já vinha embutido no próprio processador, houve também uma melhora sensível na velocidade devido o advento da memória de 72 pinos, muito mais rapida que sua antepassada de 30 pinos e das placas PCI de 32 bits duas vezes mais velozes que as placas ISA . Os equipamentos já tinham capacidade para as placas SVGA que poderiam atingir até 16 milhões de cores, porém este artificio seria usado comercialmente mais para frente com o advento do Windows 95. Neste momento iniciava uma grande debandada para as pequenas redes como, a Novel e a Lantastic que rodariam perfeitamente nestes equipamentos, substituindo os "micrões" que rodavam em sua grande maioria os sistema UNIX (Exemplo o HP-UX da Hewlett Packard e o AIX da IBM). Esta substituição era extremamente viável devido à diferença brutal de preço entre estas máquinas.
Foto de um 386 e um 486 e a foto de Uma Mother Board (Placa Mãe) de um 486 DX 100
A Quinta GeraçãoAs aplicações exigem cada vez mais uma maior capacidade de processamento e armazenamento de dados. Sistemas especialistas, sistemas multimídia (combinação de textos, gráficos, imagens e sons), banco de dados distribuídos e redes neurais, são apenas alguns exemplos dessas necessidades. Uma das principais características dessa geração é a simplificação e miniaturização do computador, além de melhor desempenho e maior capacidade de armazenamento. Tudo isso, com os preços cada vez mais acessíveis. A tecnologia VLSI está sendo substituída pela ULSI (ULTRA LARGE SCALE INTEGRATION). O conceito de processamento está partindo para os processadores paralelos, ou seja, a execução de muitas operações simultaneamente pelas máquinas. A redução dos custos de produção e do volume dos componentes permitiram a aplicação destes computadores nos chamados sistemas embutidos, que controlam aeronaves, embarcações, automóveis e computadores de pequeno porte. São exemplos desta geração de computadores, os micros que utilizam a linha de processadores Pentium, da INTEL. 1993- Surge o Pentium As grandes mudanças neste periodo ficariam por conta das memórias DIMM de 108 pinos, do aparecimento das placas de video AGP e de um aprimoramento da slot PCI melhorando ainda mais seu desempenho. 1997- O Pentium II / 1999- O Pentium III / 2001- o Pentium 4 Não houveram grandes novidades após 1997, sendo que as mudanças ficaram por conta dos cada vez mais velozes processadores.
Na ordem o Celeron / Ciryx / AMD K6 / Pentium MMX
O Pentium 2 e o AMD K6-2 os TOP de Linha até 1998 / Foto de uma placa de Pentium II
O Futuro - Vem aí o computador quânticoA IBM anunciou ontem a construção do mais avançado computador quântico do mundo. A novidade representa um grande passo em relação ao atual processo de fabricação de chips com silício que, de acordo com especialistas, deve atingir o máximo de sua limitação física de processamento entre 10 e 20 anos. O computador quântico usa, em lugar dos tradicionais microprocessadores de chips de silício, um dispositivo baseado em propriedades físicas dos átomos, como o sentido de giro deles, para contar números um e zero (qubits), em vez de cargas elétricas como nos computadores atuais. Outra característica é que os átomos também podem se sobrepor, o que permite ao equipamento processar equações muito mais rápido. "Na verdade, os elementos básicos dos computadores quânticos são os átomos e as moléculas", diz Isaac Chuang, pesquisador que liderou a equipe formada por cientistas da IBM, Universidade de Staford e Universidade de Calgary. Cada vez menores Segundo os pesquisadores da IBM, os processadores quânticos começam onde os de silício acabam. "A computação quântica começa onde a lei de Moore termina, por volta de 2020, quando os itens dos circuitos terão o tamanho de átomos e moléculas", afirma Chuang. A lei de Moore, conceito criado em 65 pelo co-fundador da fabricante de processadores Intel, Gordon Moore, diz que o número de transistores colocados em um chip dobra a cada 18 meses. Quanto maior a quantidade de transistores nos chips, maior a velocidade de processamento. Essa teoria vem se confirmando desde a sua formulação. Pesquisa O computador quântico da IBM é um instrumento de pesquisa e não estará disponível nos próximos anos. As possíveis aplicações para o equipamento incluem a resolução de problemas matemáticos, buscas avançadas e criptografia, o que já despertou o interesse do Departamento de Defesa dos Estados Unidos * Dados sobre o Processador Quantico foram extraidos do Jornal o Estado de São Paulo de 12 de agosto de 2000